6-Dial Decade Resistance Box
RTD Simulator

FEATURES
- Accuracy ≤0.005% ±2 mΩ
- Temperature coefficient of resistance ≤ 5 ppm/°C
- Long-term stability in resistance ≤50 ppm/year (storage life)
- Low contact resistance switch and three clip-typed contacts in parallel
- Low thermal EMF terminal
- Double electrical shielding protective against noise
- Utilizing Bulk Metal® Foil ultra precision resistance inside

MASS
Approx. 4.5 kg (10 lbs)

DESCRIPTION
The ultra precision resistors, the rotary switches, the output terminals and the double shielded construction are all features of the 6-Dial Decade Resistance Box with 6½ digit readings.

Resistors used in the 6-Dial Decade Resistance Box are ultra precision Bulk Metal® Foil resistors manufactured by Alpha Electronics Corp., assuring high stability over time and environment change. Rotary switches have very low contact resistance as three clip-typed contacts are connected in parallel. The three contacts assure higher mechanical reliability mechanically. Output terminals have very low thermal EMF, using rectangular wires of low thermal resistance material in a well-designed circuit configuration. Double shielded construction inhibits interference of environmental noise.

SPECIFICATIONS

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Diag 1</td>
<td>Diag 2</td>
<td>Diag 3</td>
</tr>
<tr>
<td>ADR-6102M</td>
<td>0.10Ω</td>
<td>1.111210 kΩ</td>
<td>0.001</td>
<td>100</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>ADR-6103M</td>
<td>0.1Ω</td>
<td>11.11110 kΩ</td>
<td>0.01</td>
<td>1k</td>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>ADR-6104M</td>
<td>0.1Ω</td>
<td>111.1110 kΩ</td>
<td>0.1</td>
<td>10k</td>
<td>1k</td>
<td>100</td>
</tr>
<tr>
<td>ADR-6105M</td>
<td>1Ω</td>
<td>1.1111110 MΩ</td>
<td>1</td>
<td>100k</td>
<td>10k</td>
<td>1k</td>
</tr>
<tr>
<td>ADR-6106M</td>
<td>10Ω</td>
<td>11.111110 MΩ</td>
<td>10</td>
<td>1M</td>
<td>100k</td>
<td>10k</td>
</tr>
</tbody>
</table>

<1 MΩ
±(0.01% +50 mΩ)
≥1 MΩ ±0.1%

0.5W